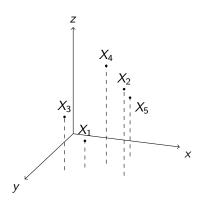
Criticality and Covered Area Fraction in Confetti Percolation

Partha Pratim Ghosh

TU Braunschweig

(This talk is a joint work with Rahul Roy)

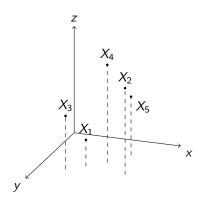


Description

• $\mathcal{P}:=(X_1,X_2,\ldots)$ be a Poisson process of intensity 1 on $\mathbb{R}^2\times(0,\infty)$.

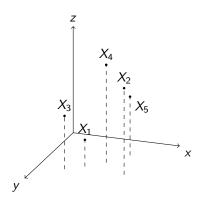
1/14

Ghosh Confetti Percolation 17 July, 2025



Description

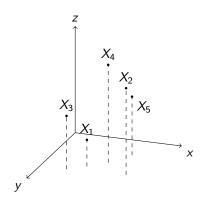
- $\mathcal{P}:=(X_1,X_2,\ldots)$ be a Poisson process of intensity 1 on $\mathbb{R}^2\times(0,\infty)$.
- $\rho := (\rho_1, \rho_2, ...)$ be a collection of i.i.d. positive, bounded random variables.



Description

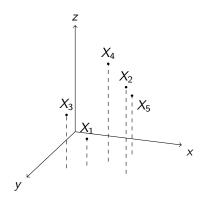
- $\mathcal{P} := (X_1, X_2, ...)$ be a Poisson process of intensity 1 on $\mathbb{R}^2 \times (0, \infty)$.
- \bullet $\rho := (\rho_1, \rho_2, ...)$ be a collection of i.i.d. positive, bounded random variables.
- $\beta := (\beta_1, \beta_2, ...)$ be a collection of i.i.d. positive, bounded random variables.

Ghosh 17 July, 2025 1/14



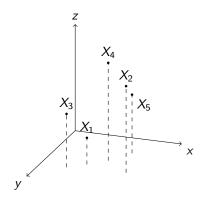
Description

- $\mathcal{P} := (X_1, X_2, \ldots)$ be a Poisson process of intensity 1 on $\mathbb{R}^2 \times (0, \infty)$.
- $ho:=(
 ho_1,
 ho_2,\dots)$ be a collection of i.i.d. positive, bounded random variables.
- $\beta := (\beta_1, \beta_2, ...)$ be a collection of i.i.d. positive, bounded random variables.
- $\varepsilon := (\varepsilon_1, \varepsilon_2, ...)$ be a collection of i.i.d. Bernoulli(λ) random variables.



Description

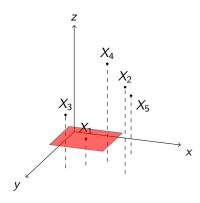
- $\mathcal{P} := (X_1, X_2, ...)$ be a Poisson process of intensity 1 on $\mathbb{R}^2 \times (0, \infty)$.
- $\rho:=(\rho_1,\rho_2,\dots)$ be a collection of i.i.d. positive, bounded random variables.
- $\beta := (\beta_1, \beta_2, ...)$ be a collection of i.i.d. positive, bounded random variables.
- $\varepsilon := (\varepsilon_1, \varepsilon_2, \ldots)$ be a collection of i.i.d. Bernoulli(λ) random variables.
- These four processes are independent of each other.



Description

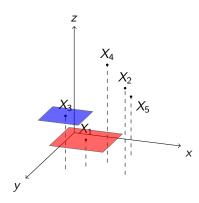
- $\mathcal{P} := (X_1, X_2, ...)$ be a Poisson process of intensity 1 on $\mathbb{R}^2 \times (0, \infty)$.
- $\rho:=(\rho_1,\rho_2,\ldots)$ be a collection of i.i.d. positive, bounded random variables.
- $\beta := (\beta_1, \beta_2, ...)$ be a collection of i.i.d. positive, bounded random variables.
- $\varepsilon := (\varepsilon_1, \varepsilon_2, \ldots)$ be a collection of i.i.d. Bernoulli(λ) random variables.
- These four processes are independent of each other.
- At each Poisson point X_i, we attach either a 'red' square with side length ρ_i, or a 'blue' square with side length β_i, according to whether ε_i equals 1 or 0, respectively.

 Ghosh
 Confetti Percolation
 17 July, 2025
 1 / 14



Description

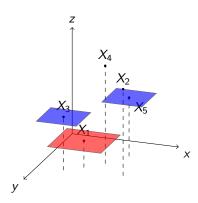
- $\mathcal{P} := (X_1, X_2, ...)$ be a Poisson process of intensity 1 on $\mathbb{R}^2 \times (0, \infty)$.
- $\rho:=(\rho_1,\rho_2,\ldots)$ be a collection of i.i.d. positive, bounded random variables.
- $\beta := (\beta_1, \beta_2, ...)$ be a collection of i.i.d. positive, bounded random variables.
- $\varepsilon := (\varepsilon_1, \varepsilon_2, ...)$ be a collection of i.i.d. Bernoulli(λ) random variables.
- These four processes are independent of each other.
- At each Poisson point X_i, we attach either a 'red' square with side length ρ_i, or a 'blue' square with side length β_i, according to whether ε_i equals 1 or 0, respectively.



Description

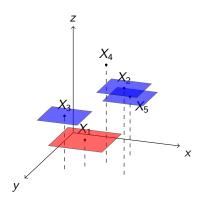
- $\mathcal{P} := (X_1, X_2, ...)$ be a Poisson process of intensity 1 on $\mathbb{R}^2 \times (0, \infty)$.
- $\rho := (\rho_1, \rho_2, \dots)$ be a collection of i.i.d. positive, bounded random variables.
- $\beta := (\beta_1, \beta_2, ...)$ be a collection of i.i.d. positive, bounded random variables.
- $\varepsilon := (\varepsilon_1, \varepsilon_2, \ldots)$ be a collection of i.i.d. Bernoulli(λ) random variables.
- These four processes are independent of each other.
- At each Poisson point X_i, we attach either a 'red' square with side length ρ_i, or a 'blue' square with side length β_i, according to whether ε_i equals 1 or 0, respectively.

 Ghosh
 Confetti Percolation
 17 July, 2025
 1 / 14



Description

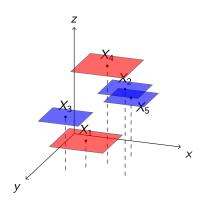
- $\mathcal{P} := (X_1, X_2, ...)$ be a Poisson process of intensity 1 on $\mathbb{R}^2 \times (0, \infty)$.
- $\rho:=(\rho_1,\rho_2,\ldots)$ be a collection of i.i.d. positive, bounded random variables.
- $\beta := (\beta_1, \beta_2, ...)$ be a collection of i.i.d. positive, bounded random variables.
- $\varepsilon := (\varepsilon_1, \varepsilon_2, ...)$ be a collection of i.i.d. Bernoulli(λ) random variables.
- These four processes are independent of each other.
- At each Poisson point X_i , we attach either a 'red' square with side length ρ_i , or a 'blue' square with side length β_i , according to whether ε_i equals 1 or 0, respectively.



Description

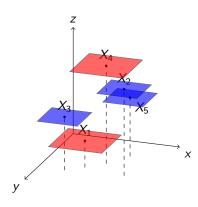
- $\mathcal{P} := (X_1, X_2, ...)$ be a Poisson process of intensity 1 on $\mathbb{R}^2 \times (0, \infty)$.
- $\rho:=(\rho_1,\rho_2,\ldots)$ be a collection of i.i.d. positive, bounded random variables.
- $\beta := (\beta_1, \beta_2, ...)$ be a collection of i.i.d. positive, bounded random variables.
- $\varepsilon := (\varepsilon_1, \varepsilon_2, \ldots)$ be a collection of i.i.d. Bernoulli(λ) random variables.
- These four processes are independent of each other.
- At each Poisson point X_i, we attach either a 'red' square with side length ρ_i, or a 'blue' square with side length β_i, according to whether ε_i equals 1 or 0, respectively.

 Ghosh
 Confetti Percolation
 17 July, 2025
 1 / 14



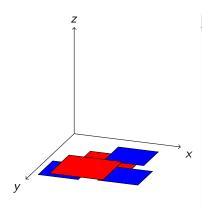
Description

- $\mathcal{P} := (X_1, X_2, \ldots)$ be a Poisson process of intensity 1 on $\mathbb{R}^2 \times (0, \infty)$.
- $\rho:=(\rho_1,\rho_2,\ldots)$ be a collection of i.i.d. positive, bounded random variables.
- $\beta := (\beta_1, \beta_2, ...)$ be a collection of i.i.d. positive, bounded random variables.
- $\varepsilon := (\varepsilon_1, \varepsilon_2, \ldots)$ be a collection of i.i.d. Bernoulli(λ) random variables.
- These four processes are independent of each other.
- At each Poisson point X_i , we attach either a 'red' square with side length ρ_i , or a 'blue' square with side length β_i , according to whether ε_i equals 1 or 0, respectively.



Description

- $\mathcal{P} := (X_1, X_2, ...)$ be a Poisson process of intensity 1 on $\mathbb{R}^2 \times (0, \infty)$.
- $\rho := (\rho_1, \rho_2, \dots)$ be a collection of i.i.d. positive, bounded random variables.
- $\beta := (\beta_1, \beta_2, ...)$ be a collection of i.i.d. positive, bounded random variables.
- $\varepsilon := (\varepsilon_1, \varepsilon_2, \ldots)$ be a collection of i.i.d. Bernoulli(λ) random variables.
- These four processes are independent of each other.
- At each Poisson point X_i, we attach either a 'red' square with side length ρ_i, or a 'blue' square with side length β_i, according to whether ε_i equals 1 or 0, respectively.
- A point in X-Y plane is coloured red if a ray sent vertically up hits a red square first, and it is coloured blue if it hits a blue square first.



Description

- $\mathcal{P} := (X_1, X_2, ...)$ be a Poisson process of intensity 1 on $\mathbb{R}^2 \times (0, \infty)$.
- $\rho:=(\rho_1,\rho_2,\ldots)$ be a collection of i.i.d. positive, bounded random variables.
- $\beta := (\beta_1, \beta_2, ...)$ be a collection of i.i.d. positive, bounded random variables.
- $\varepsilon := (\varepsilon_1, \varepsilon_2, \ldots)$ be a collection of i.i.d. Bernoulli(λ) random variables.
- These four processes are independent of each other.
- At each Poisson point X_i, we attach either a 'red' square with side length ρ_i, or a 'blue' square with side length β_i, according to whether ε_i equals 1 or 0, respectively.
- A point in X-Y plane is coloured red if a ray sent vertically up hits a red square first, and it is coloured blue if it hits a blue square first.

• **Question:** For what values of the parameters λ , β , and ρ do we have an unbounded connected red component or an unbounded connected blue component (or possibly both/neither)?

- Question: For what values of the parameters λ , β , and ρ do we have an unbounded connected red component or an unbounded connected blue component (or possibly both/neither)?
- **Assumption:** Throughout this work, we assume that ρ and β are random variables such that $0 < \rho, \beta \le R$ for some constant R > 0.

- Question: For what values of the parameters λ , β , and ρ do we have an unbounded connected red component or an unbounded connected blue component (or possibly both/neither)?
- **Assumption:** Throughout this work, we assume that ρ and β are random variables such that $0 < \rho, \beta \le R$ for some constant R > 0.
- We define

$$\lambda_{c}(\rho,\beta) := \inf\{\lambda : \mathbb{P}_{\lambda,\rho,\beta}(\operatorname{diam}(C^{\mathsf{red}}(\mathbf{0})) = \infty) > 0\}$$

- **Question:** For what values of the parameters λ , β , and ρ do we have an unbounded connected red component or an unbounded connected blue component (or possibly both/neither)?
- **Assumption:** Throughout this work, we assume that ρ and β are random variables such that $0 < \rho, \beta \le R$ for some constant R > 0.
- We define

$$\begin{split} \lambda_{c}(\rho,\beta) &:= \inf\{\lambda : \mathbb{P}_{\lambda,\rho,\beta}(\mathsf{diam}(\boldsymbol{C}^{\mathsf{red}}(\boldsymbol{0})) = \infty) > 0\} \\ &= \inf\{\lambda : \mathbb{P}_{\lambda,\rho,\beta}(\boldsymbol{C}^{\mathsf{red}}\mathsf{has an unbounded connected component}) = 1\} \end{split}$$

- **Question:** For what values of the parameters λ , β , and ρ do we have an unbounded connected red component or an unbounded connected blue component (or possibly both/neither)?
- **Assumption:** Throughout this work, we assume that ρ and β are random variables such that $0 < \rho, \beta \le R$ for some constant R > 0.
- We define

$$\begin{split} \lambda_c(\rho,\beta) &:= \inf\{\lambda : \mathbb{P}_{\lambda,\rho,\beta}(\mathsf{diam}(\boldsymbol{C}^\mathsf{red}(\boldsymbol{0})) = \infty) > 0\} \\ &= \inf\{\lambda : \mathbb{P}_{\lambda,\rho,\beta}(\boldsymbol{C}^\mathsf{red}\mathsf{has} \text{ an unbounded connected component}) = 1\} \end{split}$$

Similarly, we define

$$\begin{split} \lambda_{c}^{*}(\rho,\beta) := & \sup\{\lambda : \mathbb{P}_{\lambda,\rho,\beta}(\operatorname{diam}(\boldsymbol{C}^{\mathsf{blue}}(\mathbf{0})) = \infty) > 0\} \\ &= & \sup\{\lambda : \mathbb{P}_{\lambda,\rho,\beta}(\boldsymbol{C}^{\mathsf{blue}}\mathsf{has an unbounded connected component}) = 1\} \end{split}$$

- **Question:** For what values of the parameters λ , β , and ρ do we have an unbounded connected red component or an unbounded connected blue component (or possibly both/neither)?
- **Assumption:** Throughout this work, we assume that ρ and β are random variables such that $0 < \rho, \beta \le R$ for some constant R > 0.
- We define

$$\begin{split} \lambda_c(\rho,\beta) := &\inf\{\lambda: \mathbb{P}_{\lambda,\rho,\beta}(\operatorname{diam}(\boldsymbol{C}^{\mathsf{red}}(\mathbf{0})) = \infty) > 0\} \\ &= \inf\{\lambda: \mathbb{P}_{\lambda,\rho,\beta}(\boldsymbol{C}^{\mathsf{red}} \text{has an unbounded connected component}) = 1\} \end{split}$$

Similarly, we define

$$\begin{split} \lambda_c^*(\rho,\beta) &:= \sup\{\lambda : \mathbb{P}_{\lambda,\rho,\beta}(\operatorname{diam}(\boldsymbol{C}^{\mathsf{blue}}(\boldsymbol{0})) = \infty) > 0\} \\ &= \sup\{\lambda : \mathbb{P}_{\lambda,\rho,\beta}(\boldsymbol{C}^{\mathsf{blue}}\mathsf{has} \text{ an unbounded connected component}) = 1\} \\ &= \sup\{\lambda : \mathbb{P}_{1-\lambda,\beta,\rho}(\operatorname{diam}(\boldsymbol{C}^{\mathsf{red}}(\boldsymbol{0})) = \infty) > 0\} \end{split}$$

- **Question:** For what values of the parameters λ , β , and ρ do we have an unbounded connected red component or an unbounded connected blue component (or possibly both/neither)?
- **Assumption:** Throughout this work, we assume that ρ and β are random variables such that $0 < \rho, \beta \le R$ for some constant R > 0.
- We define

$$\begin{split} \lambda_c(\rho,\beta) &:= \inf\{\lambda : \mathbb{P}_{\lambda,\rho,\beta}(\mathsf{diam}(\pmb{C}^\mathsf{red}(\pmb{0})) = \infty) > 0\} \\ &= \inf\{\lambda : \mathbb{P}_{\lambda,\rho,\beta}(\pmb{C}^\mathsf{red}\mathsf{has} \text{ an unbounded connected component}) = 1\} \end{split}$$

Similarly, we define

$$\begin{split} \lambda_c^*(\rho,\beta) &:= \sup\{\lambda: \mathbb{P}_{\lambda,\rho,\beta}(\operatorname{diam}(\boldsymbol{C}^{\mathsf{blue}}(\boldsymbol{0})) = \infty) > 0\} \\ &= \sup\{\lambda: \mathbb{P}_{\lambda,\rho,\beta}(\boldsymbol{C}^{\mathsf{blue}} \text{has an unbounded connected component}) = 1\} \\ &= \sup\{\lambda: \mathbb{P}_{1-\lambda,\beta,\rho}(\operatorname{diam}(\boldsymbol{C}^{\mathsf{red}}(\boldsymbol{0})) = \infty) > 0\} \\ &= 1 - \inf\{1 - \lambda: \mathbb{P}_{1-\lambda,\beta,\rho}(\operatorname{diam}(\boldsymbol{C}^{\mathsf{red}}(\boldsymbol{0})) = \infty) > 0\} \end{split}$$

- **Question:** For what values of the parameters λ , β , and ρ do we have an unbounded connected red component or an unbounded connected blue component (or possibly both/neither)?
- **Assumption:** Throughout this work, we assume that ρ and β are random variables such that $0 < \rho, \beta \le R$ for some constant R > 0.
- We define

$$\begin{split} \lambda_{c}(\rho,\beta) &:= \inf\{\lambda : \mathbb{P}_{\lambda,\rho,\beta}(\mathsf{diam}(\boldsymbol{C}^\mathsf{red}(\boldsymbol{0})) = \infty) > 0\} \\ &= \inf\{\lambda : \mathbb{P}_{\lambda,\rho,\beta}(\boldsymbol{C}^\mathsf{red}\mathsf{has} \; \mathsf{an} \; \mathsf{unbounded} \; \mathsf{connected} \; \mathsf{component}) = 1\} \end{split}$$

Similarly, we define

$$\begin{split} \lambda_c^*(\rho,\beta) &:= \sup\{\lambda: \mathbb{P}_{\lambda,\rho,\beta}(\operatorname{diam}(\boldsymbol{C}^{\mathsf{blue}}(\boldsymbol{0})) = \infty) > 0\} \\ &= \sup\{\lambda: \mathbb{P}_{\lambda,\rho,\beta}(\boldsymbol{C}^{\mathsf{blue}} \mathsf{has} \text{ an unbounded connected component}) = 1\} \\ &= \sup\{\lambda: \mathbb{P}_{1-\lambda,\beta,\rho}(\operatorname{diam}(\boldsymbol{C}^{\mathsf{red}}(\boldsymbol{0})) = \infty) > 0\} \\ &= 1 - \inf\{1 - \lambda: \mathbb{P}_{1-\lambda,\beta,\rho}(\operatorname{diam}(\boldsymbol{C}^{\mathsf{red}}(\boldsymbol{0})) = \infty) > 0\} \\ &= 1 - \lambda_c(\beta,\rho). \end{split}$$

Ghosh Confetti Percolation 17 July, 2025

Non-triviality of λ_c

Theorem 1.

For ρ and β bounded random variables, we have

$$0 < \lambda_c(\rho, \beta) < 1.$$

Ghosh Confetti Percolation 17 July, 2025

Non-triviality of λ_c

Theorem 1.

For ρ and β bounded random variables, we have

$$0 < \lambda_c(\rho, \beta) < 1.$$

Proposition 1 (Exponential Decay Property).

Consider the confetti model $(\mathcal{P}, \lambda, \rho, \beta)$. There exists a constant $\kappa_0 \in (0, 1)$ such that whenever $\mathbb{P}_{\lambda}\left(\bigcap_{N\times 3N}\right)<\kappa_0$ for some $N\geq R$, we have

$$\mathbb{P}_{\lambda}(\mathsf{diam}(\mathcal{C}^{\mathsf{red}}(\mathbf{0})) \geq a) \leq c_1 \exp(-c_2 a)$$

for all a>0 and for some positive constants c_1 and c_2 depending only on κ_0 .

Ghosh Confetti Percolation 17 July, 2025

$$\lambda_c = \lambda_c^*$$

Theorem 2.

For ρ and β bounded random variables, we have

$$\lambda_c(\rho,\beta) = \lambda_c^*(\rho,\beta).$$

Ghosh Confetti Percolation 17 July, 2025

$$\lambda_c = \lambda_c^*$$

Theorem 2.

For ρ and β bounded random variables, we have

$$\lambda_c(\rho,\beta) = \lambda_c^*(\rho,\beta).$$

equivalently,

$$\lambda_c(\rho,\beta) + \lambda_c(\beta,\rho) = 1.$$

$$\lambda_c = \lambda_c^*$$

Theorem 2.

For ρ and β bounded random variables, we have

$$\lambda_c(\rho,\beta) = \lambda_c^*(\rho,\beta).$$

equivalently,

$$\lambda_c(\rho,\beta) + \lambda_c(\beta,\rho) = 1.$$

In particular, when $\rho \stackrel{d}{=} \beta$, due to symmetry we have

$$\lambda_c(\rho,\beta) = 1/2.$$

Confetti Percolation 17 July, 2025 4 / 14

Sharp Phase Transition

We define

$$\theta_n(\lambda) := \mathbb{P}_{\lambda}(\mathsf{diam}(C^{\mathsf{red}}(\mathbf{0})) \geq n)$$

and

$$heta(\lambda) := \mathbb{P}_{\lambda}(\mathsf{diam}({\color{red}\mathcal{C}}^\mathsf{red}(\mathbf{0})) = \infty).$$

Proposition 2 (Sharp Phase Transition).

For any $\lambda < \lambda_c(\rho, \beta)$, there exists $c_{\lambda} > 0$ such that for any $n \ge 1$,

$$\theta_n(\lambda) \leq \exp(-c_{\lambda}n)$$
.

Furthermore, there exists c > 0 such that for any $\lambda_c(\rho, \beta) < \lambda$,

$$\theta(\lambda) \geq c(\lambda - \lambda_c(\rho, \beta)).$$

$$\lambda_c = \lambda_c^*$$

$$\lambda_c(\rho,\beta) \leq \lambda_c^*(\rho,\beta).$$

Ghosh Confetti Percolation 17 July, 2025

$$\lambda_c = \lambda_c^*$$

$$\lambda_c(\rho,\beta) \leq \lambda_c^*(\rho,\beta).$$

• By the uniqueness of unbounded connected components, one can show that

$$\lambda_c(\rho,\beta) \geq \lambda_c^*(\rho,\beta).$$

Ghosh Confetti Percolation 17 July, 2025

$$\lambda_c = \lambda_c^*$$

$$\lambda_c(\rho,\beta) \leq \lambda_c^*(\rho,\beta).$$

By the uniqueness of unbounded connected components, one can show that

$$\lambda_c(\rho,\beta) \geq \lambda_c^*(\rho,\beta).$$

Theorem 2.

For ρ and β bounded random variables, we have

$$\lambda_c(\rho,\beta) = \lambda_c^*(\rho,\beta)$$
 equivalently,

$$\lambda_c(\rho,\beta) + \lambda_c(\beta,\rho) = 1.$$

6/14

In particular, when $\rho \stackrel{d}{=} \beta$, due to symmetry we have

$$\lambda_c(\rho,\beta) = 1/2.$$

Ghosh Confetti Percolation 17 July, 2025

$$\lambda_c = \lambda_c^*$$

$$\lambda_c(\rho,\beta) \leq \lambda_c^*(\rho,\beta).$$

By the uniqueness of unbounded connected components, one can show that

$$\lambda_c(\rho,\beta) \geq \lambda_c^*(\rho,\beta).$$

Theorem 2.

For ρ and β bounded random variables, we have

$$\lambda_c(\rho,\beta) = \lambda_c^*(\rho,\beta)$$
 equivalently, $\lambda_c(\rho,\beta) + \lambda_c(\beta,\rho) = 1$.

In particular, when $\rho \stackrel{d}{=} \beta$, due to symmetry we have

$$\lambda_c(\rho,\beta) = 1/2.$$

• **Question:** What is value of $\lambda_c(\rho, \beta)$ in general?

Ghosh Confetti Percolation 17 July, 2025

Covered Area Fraction

We define

$$\mathsf{CAF}_{\mathsf{red}}(\lambda, \rho, \beta) := \mathbb{E}_{\lambda} \left[\ell(\mathsf{red} \ \mathsf{region} \ \mathsf{in} \ [0, 1]^2) \right],$$

and

$$\mathsf{CAF}_{\mathsf{blue}}(\lambda,\rho,\beta) := \mathbb{E}_{\lambda} \left[\ell(\mathsf{blue} \ \mathsf{region} \ \mathsf{in} \ [0,1]^2) \right],$$

here ℓ denotes the Lebesgue measure on \mathbb{R}^2 .

Covered Area Fraction

We define

$$\mathsf{CAF}_{\mathsf{red}}(\lambda,\rho,\beta) := \mathbb{E}_{\lambda} \left[\ell(\mathsf{red} \ \mathsf{region} \ \mathsf{in} \ [0,1]^2) \right],$$

and

$$\mathsf{CAF}_{\mathsf{blue}}(\lambda, \rho, \beta) := \mathbb{E}_{\lambda} \left[\ell(\mathsf{blue} \ \mathsf{region} \ \mathsf{in} \ [0, 1]^2) \right],$$

here ℓ denotes the Lebesgue measure on \mathbb{R}^2 .

Theorem 3.

For any $t \in (0,1)$, there exists a confetti model $(\mathcal{P}, \lambda, \rho, \beta)$, with ρ and β random, for which $\mathsf{CAF}_{\mathsf{red}}(\lambda, \rho, \beta) > t$ but red does not percolate.

An Equivalent Construction of the Confetti Model

- Let \mathcal{R} and \mathcal{B} be two independent Poisson point processes on $\mathbb{R}^2 \times (0, \infty)$ of intensities λ_r and λ_h respectively.
- At points of \mathcal{R} we place red squares of side length ρ and at points of \mathcal{B} we place blue squares of side length β .
- We denote this model by $(\mathcal{R}, \lambda_r, \rho; \mathcal{B}, \lambda_b, \beta)$ and we note that, on scaling this model is equivalent to the model $(\mathcal{P}, \frac{\lambda_r}{\lambda_r + \lambda_b}, \rho, \beta)$.

Transitivity Condition

Transitivity Condition

Let ρ , β and γ be three positive fixed **constants** (not necessarily equal), and let λ_r , λ_b and λ_g be the intensities of the three independent Poisson point processes red, blue and green, labeled \mathcal{R} , \mathcal{B} and \mathcal{G} , respectively. Suppose red is supercritical in the red/blue confetti model $(\mathcal{R}, \lambda_r, \rho; \mathcal{B}, \lambda_b, \beta)$ and blue is supercritical in the blue/green confetti model $(\mathcal{B}, \lambda_b, \beta; \mathcal{G}, \lambda_g, \gamma)$, then red is supercritical in the red/green confetti model $(\mathcal{R}, \lambda_r, \rho; \mathcal{G}, \lambda_g, \gamma)$.

Transitivity Condition

Let ρ , β and γ be three positive fixed **constants** (not necessarily equal), and let λ_r , λ_b and λ_g be the intensities of the three independent Poisson point processes red, blue and green, labeled \mathcal{R} , \mathcal{B} and \mathcal{G} , respectively. Suppose red is supercritical in the red/blue confetti model $(\mathcal{R}, \lambda_r, \rho; \mathcal{B}, \lambda_b, \beta)$ and blue is supercritical in the blue/green confetti model $(\mathcal{B}, \lambda_b, \beta; \mathcal{G}, \lambda_g, \gamma)$, then red is supercritical in the red/green confetti model ($\mathcal{R}, \lambda_r, \rho; \mathcal{G}, \lambda_\sigma, \gamma$).

• The transitivity condition is equivalent to

$$\frac{\lambda_r}{\lambda_r + \lambda_b} > \lambda_c(\rho, \beta) \text{ and } \frac{\lambda_b}{\lambda_b + \lambda_g} > \lambda_c(\beta, \gamma) \Rightarrow \frac{\lambda_r}{\lambda_r + \lambda_g} > \lambda_c(\rho, \gamma).$$

Transitivity Condition

Let ρ , β and γ be three positive fixed **constants** (not necessarily equal), and let λ_r , λ_b and λ_g be the intensities of the three independent Poisson point processes red, blue and green, labeled \mathcal{R} , \mathcal{B} and \mathcal{G} , respectively. Suppose red is supercritical in the red/blue confetti model $(\mathcal{R}, \lambda_r, \rho; \mathcal{B}, \lambda_b, \beta)$ and blue is supercritical in the blue/green confetti model $(\mathcal{B}, \lambda_b, \beta; \mathcal{G}, \lambda_g, \gamma)$, then red is supercritical in the red/green confetti model $(\mathcal{R}, \lambda_r, \rho; \mathcal{G}, \lambda_g, \gamma)$.

• The transitivity condition is equivalent to

$$\frac{\lambda_r}{\lambda_r + \lambda_b} > \lambda_c(\rho, \beta) \text{ and } \frac{\lambda_b}{\lambda_b + \lambda_g} > \lambda_c(\beta, \gamma) \Rightarrow \frac{\lambda_r}{\lambda_r + \lambda_g} > \lambda_c(\rho, \gamma).$$

Equivalently,

$$\frac{\lambda_c(\rho,\beta) \cdot \lambda_c(\beta,\gamma) \cdot \lambda_c(\gamma,\rho)}{\lambda_c(\beta,\rho) \cdot \lambda_c(\gamma,\beta) \cdot \lambda_c(\rho,\gamma)} = 1,$$

for any ρ , β and γ constants, not necessarily equal.

Ghosh Confetti Percolation 17 July, 2025

Theorem 4.

The following are equivalent:

- (i) The transitivity condition holds.
- (ii) For any ρ , β positive constants the critical covered area fraction for $(\mathcal{P}, \lambda, \rho, \beta)$ equals 1/2.
- (iii) For any ρ , β positive constants in the confetti model $(\mathcal{P},\lambda,\rho,\beta)$ red percolates if $\lambda>\frac{\beta^2}{\rho^2+\beta^2}$ and blue percolates if $\lambda<\frac{\beta^2}{\rho^2+\beta^2}$, i.e., $\lambda_{\mathbf{c}}(\rho,\beta)=\frac{\beta^2}{\rho^2+\beta^2}$.

Theorem 4.

The following are equivalent:

- (i) The transitivity condition holds.
- (ii) For any ρ , β positive constants the critical covered area fraction for $(\mathcal{P}, \lambda, \rho, \beta)$ equals 1/2.
- (iii) For any ρ , β positive constants in the confetti model $(\mathcal{P}, \lambda, \rho, \beta)$ red percolates if $\lambda > \frac{\beta^2}{\rho^2 + \beta^2}$ and blue percolates if $\lambda < \frac{\beta^2}{\rho^2 + \beta^2}$, i.e., $\lambda_c(\rho, \beta) = \frac{\beta^2}{\rho^2 + \beta^2}$.
 - We believe that the transitivity condition holds and simulations suggest the veracity of our belief. More details, the source code etc. of the simulation are available at https://www.isid.ac.in/~rahul/index.php/source-code/

Theorem 4.

The following are equivalent:

- The transitivity condition holds.
- (ii) For any ρ , β positive constants the critical covered area fraction for $(\mathcal{P}, \lambda, \rho, \beta)$ equals 1/2.
- (iii) For any ρ , β positive constants in the confetti model $(\mathcal{P}, \lambda, \rho, \beta)$ red percolates if $\lambda > \frac{\beta^2}{\rho^2 + \beta^2}$ and blue percolates if $\lambda < \frac{\beta^2}{\rho^2 + \beta^2}$, i.e., $\lambda_c(\rho, \beta) = \frac{\beta^2}{\rho^2 + \beta^2}$.
 - Recall that

$$\mathsf{CAF}_{\mathsf{red}}(\lambda, \rho, \beta) := \mathbb{E}_{\lambda} \left[\ell(\mathsf{red} \ \mathsf{region} \ \mathsf{in} \ [0, 1]^2) \right],$$

and

$$\mathsf{CAF}_{\mathsf{blue}}(\lambda, \rho, \beta) := \mathbb{E}_{\lambda} \left[\ell(\mathsf{blue} \ \mathsf{region} \ \mathsf{in} \ [0, 1]^2) \right].$$

Confetti Percolation 17 July, 2025

Theorem 4.

The following are equivalent:

- (i) The transitivity condition holds.
- (ii) For any ρ , β positive constants the critical covered area fraction for $(\mathcal{P}, \lambda, \rho, \beta)$ equals 1/2.
- (iii) For any ρ , β positive constants in the confetti model $(\mathcal{P},\lambda,\rho,\beta)$ red percolates if $\lambda>\frac{\beta^2}{\rho^2+\beta^2}$ and blue percolates if $\lambda<\frac{\beta^2}{\rho^2+\beta^2}$, i.e., $\lambda_c(\rho,\beta)=\frac{\beta^2}{\rho^2+\beta^2}$.
 - Recall that

$$\mathsf{CAF}_{\mathsf{red}}(\lambda,\rho,\beta) := \mathbb{E}_{\lambda} \left[\ell(\mathsf{red} \ \mathsf{region} \ \mathsf{in} \ [0,1]^2) \right] = \frac{\lambda \rho^2}{\lambda \rho^2 + (1-\lambda)\beta^2},$$

and

$$\mathsf{CAF}_{\mathsf{blue}}(\lambda, \rho, \beta) := \mathbb{E}_{\lambda} \left[\ell(\mathsf{blue} \ \mathsf{region} \ \mathsf{in} \ [0, 1]^2) \right] = \frac{(1 - \lambda)\beta^2}{\lambda \rho^2 + (1 - \lambda)\beta^2}.$$

Ghosh Confetti Percolation 17 July, 2025

Theorem 4.

The following are equivalent:

- (i) The transitivity condition holds.
- (ii) For any ρ , β positive constants the critical covered area fraction for $(\mathcal{P}, \lambda, \rho, \beta)$ equals 1/2.
- (iii) For any ρ , β positive constants in the confetti model $(\mathcal{P}, \lambda, \rho, \beta)$ red percolates if $\lambda > \frac{\beta^2}{\rho^2 + \beta^2}$ and blue percolates if $\lambda < \frac{\beta^2}{\rho^2 + \beta^2}$, i.e., $\lambda_c(\rho, \beta) = \frac{\beta^2}{\rho^2 + \beta^2}$.
 - Recall that

$$\mathsf{CAF}_{\mathsf{red}}(\lambda,\rho,\beta) := \mathbb{E}_{\lambda} \left[\ell(\mathsf{red} \ \mathsf{region} \ \mathsf{in} \ [0,1]^2) \right] = \frac{\lambda \rho^2}{\lambda \rho^2 + (1-\lambda)\beta^2},$$

and

$$\mathsf{CAF}_{\mathsf{blue}}(\lambda, \rho, \beta) := \mathbb{E}_{\lambda} \left[\ell(\mathsf{blue} \; \mathsf{region} \; \mathsf{in} \; [0, 1]^2) \right] = \frac{(1 - \lambda)\beta^2}{\lambda \rho^2 + (1 - \lambda)\beta^2}.$$

This implies (ii) ⇔ (iii).

Ghosh

Theorem 4.

The following are equivalent:

- (i) The transitivity condition holds.
- (ii) For any ρ , β positive constants the critical covered area fraction for $(\mathcal{P}, \lambda, \rho, \beta)$ equals 1/2.
- (iii) For any ρ , β positive constants in the confetti model $(\mathcal{P},\lambda,\rho,\beta)$ red percolates if $\lambda > \frac{\beta^2}{\rho^2 + \beta^2}$ and blue percolates if $\lambda < \frac{\beta^2}{\rho^2 + \beta^2}$, i.e., $\lambda_c(\rho,\beta) = \frac{\beta^2}{\rho^2 + \beta^2}$.
 - (ii) \Rightarrow (i) is immediate

Theorem 4.

The following are equivalent:

- The transitivity condition holds.
- (ii) For any ρ , β positive constants the critical covered area fraction for $(\mathcal{P}, \lambda, \rho, \beta)$ equals 1/2.
- (iii) For any ρ , β positive constants in the confetti model $(\mathcal{P}, \lambda, \rho, \beta)$ red percolates if $\lambda > \frac{\beta^2}{c^2 + \beta^2}$ and blue percolates if $\lambda < \frac{\beta^2}{c^2 + \beta^2}$, i.e., $\lambda_c(\rho, \beta) = \frac{\beta^2}{c^2 + \beta^2}$.
 - (ii) \Rightarrow (i) is immediate because assuming (ii), we get that red is supercritical in the model $(\mathcal{R}, \lambda_r, \rho; \mathcal{B}, \lambda_b, \beta) \Rightarrow \lambda_r \rho^2 > \lambda_b \beta^2$

Theorem 4.

The following are equivalent:

- The transitivity condition holds.
- (ii) For any ρ , β positive constants the critical covered area fraction for $(\mathcal{P}, \lambda, \rho, \beta)$ equals 1/2.
- (iii) For any ρ , β positive constants in the confetti model $(\mathcal{P}, \lambda, \rho, \beta)$ red percolates if $\lambda > \frac{\beta^2}{\sigma^2 + \beta^2}$ and blue percolates if $\lambda < \frac{\beta^2}{\sigma^2 + \beta^2}$, i.e., $\lambda_c(\rho, \beta) = \frac{\beta^2}{\sigma^2 + \beta^2}$.
 - (ii) \Rightarrow (i) is immediate because assuming (ii), we get that red is supercritical in the model $(\mathcal{R}, \lambda_r, \rho; \mathcal{B}, \lambda_b, \beta) \Rightarrow \lambda_r \rho^2 > \lambda_b \beta^2$ blue is supercritical in the model $(\mathcal{B}, \lambda_b, \beta; \mathcal{G}, \lambda_g, \gamma) \Rightarrow \lambda_b \beta^2 > \lambda_g \gamma^2$

Theorem 4.

The following are equivalent:

- (i) The transitivity condition holds.
- (ii) For any ρ , β positive constants the critical covered area fraction for $(\mathcal{P}, \lambda, \rho, \beta)$ equals 1/2.
- (iii) For any ρ , β positive constants in the confetti model $(\mathcal{P},\lambda,\rho,\beta)$ red percolates if $\lambda > \frac{\beta^2}{\rho^2 + \beta^2}$ and blue percolates if $\lambda < \frac{\beta^2}{\rho^2 + \beta^2}$, i.e., $\lambda_c(\rho,\beta) = \frac{\beta^2}{\rho^2 + \beta^2}$.
 - (ii) \Rightarrow (i) is immediate because assuming (ii), we get that red is supercritical in the model $(\mathcal{R}, \lambda_r, \rho; \mathcal{B}, \lambda_b, \beta) \Rightarrow \lambda_r \rho^2 > \lambda_b \beta^2$ blue is supercritical in the model $(\mathcal{B}, \lambda_b, \beta; \mathcal{G}, \lambda_g, \gamma) \Rightarrow \lambda_b \beta^2 > \lambda_g \gamma^2$ $\Rightarrow \lambda_r \rho^2 > \lambda_\sigma \gamma^2$

Theorem 4.

The following are equivalent:

- The transitivity condition holds.
- (ii) For any ρ , β positive constants the critical covered area fraction for $(\mathcal{P}, \lambda, \rho, \beta)$ equals 1/2.
- (iii) For any ρ , β positive constants in the confetti model $(\mathcal{P}, \lambda, \rho, \beta)$ red percolates if $\lambda > \frac{\beta^2}{\sigma^2 + \beta^2}$ and blue percolates if $\lambda < \frac{\beta^2}{\sigma^2 + \beta^2}$, i.e., $\lambda_c(\rho, \beta) = \frac{\beta^2}{\sigma^2 + \beta^2}$.
 - (ii) \Rightarrow (i) is immediate because assuming (ii), we get that red is supercritical in the model $(\mathcal{R}, \lambda_r, \rho; \mathcal{B}, \lambda_b, \beta) \Rightarrow \lambda_r \rho^2 > \lambda_b \beta^2$ blue is supercritical in the model $(\mathcal{B}, \lambda_b, \beta; \mathcal{G}, \lambda_g, \gamma) \Rightarrow \lambda_b \beta^2 > \lambda_g \gamma^2$ $\Rightarrow \lambda_r \rho^2 > \lambda_\sigma \gamma^2 \Rightarrow \text{red}$ is supercritical in the model $(\mathcal{R}, \lambda_r, \rho; \mathcal{G}, \lambda_g, \gamma)$.

• Suppose the transitivity condition holds, and if possible, suppose we have a confetti model $(\mathcal{R}, \lambda_r, \rho; \mathcal{B}, \lambda_b, \beta)$ with $\mathsf{CAF}_{\mathsf{red}}(\lambda, \rho, \beta) < 1/2$, i.e., $\lambda_r \rho^2 < \lambda_b \beta^2$, but red is supercritical.

- Suppose the transitivity condition holds, and if possible, suppose we have a confetti model $(\mathcal{R}, \lambda_r, \rho; \mathcal{B}, \lambda_b, \beta)$ with $\mathsf{CAF}_{\mathsf{red}}(\lambda, \rho, \beta) < 1/2$, i.e., $\lambda_r \rho^2 < \lambda_b \beta^2$, but red is supercritical.
- Observe that

$$(\mathcal{R}, \lambda_r, \rho; \mathcal{B}, \lambda_b, \beta) \equiv (\mathcal{R}, \lambda_r \rho^2, 1; \mathcal{B}, \lambda_b \rho^2, \frac{\beta}{\rho})$$
 [by $(x_1, x_2, x_3) \mapsto (x_1/\rho, x_2/\rho, x_3)$]

- Suppose the transitivity condition holds, and if possible, suppose we have a confetti model $(\mathcal{R}, \lambda_r, \rho; \mathcal{B}, \lambda_b, \beta)$ with $\mathsf{CAF}_{\mathsf{red}}(\lambda, \rho, \beta) < 1/2$, i.e., $\lambda_r \rho^2 < \lambda_b \beta^2$, but red is supercritical.
- Observe that

$$(\mathcal{R}, \lambda_r, \rho; \mathcal{B}, \lambda_b, \beta) \equiv (\mathcal{R}, \lambda_r \rho^2, 1; \mathcal{B}, \lambda_b \rho^2, \frac{\beta}{\rho}) \qquad [\text{by } (x_1, x_2, x_3) \mapsto (x_1/\rho, x_2/\rho, x_3)]$$

$$\equiv (\mathcal{R}, 1, 1; \mathcal{B}, \frac{\lambda_b}{\lambda_r}, \frac{\beta}{\rho}) \qquad [\text{by } (x_1, x_2, x_3) \mapsto (x_1, x_2, \lambda_r \rho^2 x_3)]$$

- Suppose the transitivity condition holds, and if possible, suppose we have a confetti model $(\mathcal{R}, \lambda_r, \rho; \mathcal{B}, \lambda_b, \beta)$ with $\mathsf{CAF}_{\mathsf{red}}(\lambda, \rho, \beta) < 1/2$, i.e., $\lambda_r \rho^2 < \lambda_b \beta^2$, but red is supercritical.
- Observe that

$$(\mathcal{R}, \lambda_r, \rho; \mathcal{B}, \lambda_b, \beta) \equiv (\mathcal{R}, \lambda_r \rho^2, 1; \mathcal{B}, \lambda_b \rho^2, \frac{\beta}{\rho}) \qquad [\text{by } (x_1, x_2, x_3) \mapsto (x_1/\rho, x_2/\rho, x_3)]$$

$$\equiv (\mathcal{R}, 1, 1; \mathcal{B}, \frac{\lambda_b}{\lambda_r}, \frac{\beta}{\rho}) \qquad [\text{by } (x_1, x_2, x_3) \mapsto (x_1, x_2, \lambda_r \rho^2 x_3)]$$

$$\equiv (\mathcal{R}, 1, 1; \mathcal{B}, \mu, \nu) \qquad [\text{by } \mu := \lambda_b/\lambda_r, \nu = \beta/\rho]$$

- Suppose the transitivity condition holds, and if possible, suppose we have a confetti model $(\mathcal{R}, \lambda_r, \rho; \mathcal{B}, \lambda_b, \beta)$ with $\mathsf{CAF}_{\mathsf{red}}(\lambda, \rho, \beta) < 1/2$, i.e., $\lambda_r \rho^2 < \lambda_b \beta^2$, but red is supercritical.
- Observe that

$$\begin{split} (\mathcal{R}, \lambda_r, \rho; \mathcal{B}, \lambda_b, \beta) &\equiv (\mathcal{R}, \lambda_r \rho^2, 1; \mathcal{B}, \lambda_b \rho^2, \frac{\beta}{\rho}) & \text{[by } (x_1, x_2, x_3) \mapsto (x_1/\rho, x_2/\rho, x_3)] \\ &\equiv (\mathcal{R}, 1, 1; \mathcal{B}, \frac{\lambda_b}{\lambda_r}, \frac{\beta}{\rho}) & \text{[by } (x_1, x_2, x_3) \mapsto (x_1, x_2, \lambda_r \rho^2 x_3)] \\ &\equiv (\mathcal{R}, 1, 1; \mathcal{B}, \mu, \nu) & \text{[by } \mu := \lambda_b/\lambda_r, \nu = \beta/\rho] \\ &\equiv (\mathcal{R}, \mu^{k-1}, \nu^{k-1}; \mathcal{B}, \mu^k, \nu^k) & \text{for any } k \in \mathbb{N} & \text{[by similar scaling]} \end{split}$$

- Suppose the transitivity condition holds, and if possible, suppose we have a confetti model $(\mathcal{R}, \lambda_r, \rho; \mathcal{B}, \lambda_b, \beta)$ with $\mathsf{CAF}_{\mathsf{red}}(\lambda, \rho, \beta) < 1/2$, i.e., $\lambda_r \rho^2 < \lambda_b \beta^2$, but red is supercritical.
- Observe that

$$\begin{split} (\mathcal{R}, \lambda_r, \rho; \mathcal{B}, \lambda_b, \beta) &\equiv (\mathcal{R}, \lambda_r \rho^2, 1; \mathcal{B}, \lambda_b \rho^2, \frac{\beta}{\rho}) & \text{[by } (x_1, x_2, x_3) \mapsto (x_1/\rho, x_2/\rho, x_3)] \\ &\equiv (\mathcal{R}, 1, 1; \mathcal{B}, \frac{\lambda_b}{\lambda_r}, \frac{\beta}{\rho}) & \text{[by } (x_1, x_2, x_3) \mapsto (x_1, x_2, \lambda_r \rho^2 x_3)] \\ &\equiv (\mathcal{R}, 1, 1; \mathcal{B}, \mu, \nu) & \text{[by } \mu := \lambda_b/\lambda_r, \nu = \beta/\rho] \\ &\equiv (\mathcal{R}, \mu^{k-1}, \nu^{k-1}; \mathcal{B}, \mu^k, \nu^k) & \text{for any } k \in \mathbb{N} & \text{[by similar scaling]} \end{split}$$

• If red is supercritical in $(\mathcal{R}, 1, 1; \mathcal{B}, \mu, \nu)$, then red is supercritical in $(\mathcal{R}, \mu, \nu; \mathcal{B}, \mu^2, \nu^2)$.

- Suppose the transitivity condition holds, and if possible, suppose we have a confetti model $(\mathcal{R}, \lambda_r, \rho; \mathcal{B}, \lambda_b, \beta)$ with $\mathsf{CAF}_{\mathsf{red}}(\lambda, \rho, \beta) < 1/2$, i.e., $\lambda_r \rho^2 < \lambda_b \beta^2$, but red is supercritical.
- Observe that

$$\begin{split} (\mathcal{R}, \lambda_r, \rho; \mathcal{B}, \lambda_b, \beta) &\equiv (\mathcal{R}, \lambda_r \rho^2, 1; \mathcal{B}, \lambda_b \rho^2, \frac{\beta}{\rho}) & \text{[by } (x_1, x_2, x_3) \mapsto (x_1/\rho, x_2/\rho, x_3)] \\ &\equiv (\mathcal{R}, 1, 1; \mathcal{B}, \frac{\lambda_b}{\lambda_r}, \frac{\beta}{\rho}) & \text{[by } (x_1, x_2, x_3) \mapsto (x_1, x_2, \lambda_r \rho^2 x_3)] \\ &\equiv (\mathcal{R}, 1, 1; \mathcal{B}, \mu, \nu) & \text{[by } \mu := \lambda_b/\lambda_r, \nu = \beta/\rho] \\ &\equiv (\mathcal{R}, \mu^{k-1}, \nu^{k-1}; \mathcal{B}, \mu^k, \nu^k) & \text{for any } k \in \mathbb{N} & \text{[by similar scaling]} \end{split}$$

• If red is supercritical in $(\mathcal{R}, 1, 1; \mathcal{B}, \mu, \nu)$, then red is supercritical in $(\mathcal{R}, \mu, \nu; \mathcal{B}, \mu^2, \nu^2)$. Therefore, by transitivity, red is supercritical in $(\mathcal{R}, 1, 1; \mathcal{B}, \mu^2, \nu^2)$.

- Suppose the transitivity condition holds, and if possible, suppose we have a confetti model $(\mathcal{R}, \lambda_r, \rho; \mathcal{B}, \lambda_b, \beta)$ with $\mathsf{CAF}_{\mathsf{red}}(\lambda, \rho, \beta) < 1/2$, i.e., $\lambda_r \rho^2 < \lambda_b \beta^2$, but red is supercritical.
- Observe that

$$\begin{split} (\mathcal{R}, \lambda_r, \rho; \mathcal{B}, \lambda_b, \beta) &\equiv (\mathcal{R}, \lambda_r \rho^2, 1; \mathcal{B}, \lambda_b \rho^2, \frac{\beta}{\rho}) & \text{[by } (x_1, x_2, x_3) \mapsto (x_1/\rho, x_2/\rho, x_3)] \\ &\equiv (\mathcal{R}, 1, 1; \mathcal{B}, \frac{\lambda_b}{\lambda_r}, \frac{\beta}{\rho}) & \text{[by } (x_1, x_2, x_3) \mapsto (x_1, x_2, \lambda_r \rho^2 x_3)] \\ &\equiv (\mathcal{R}, 1, 1; \mathcal{B}, \mu, \nu) & \text{[by } \mu := \lambda_b/\lambda_r, \nu = \beta/\rho] \\ &\equiv (\mathcal{R}, \mu^{k-1}, \nu^{k-1}; \mathcal{B}, \mu^k, \nu^k) & \text{for any } k \in \mathbb{N} & \text{[by similar scaling]} \end{split}$$

• If red is supercritical in $(\mathcal{R}, 1, 1; \mathcal{B}, \mu, \nu)$, then red is supercritical in $(\mathcal{R}, \mu, \nu; \mathcal{B}, \mu^2, \nu^2)$. Therefore, by transitivity, red is supercritical in $(\mathcal{R}, 1, 1; \mathcal{B}, \mu^2, \nu^2)$. By induction, red is supercritical in $(\mathcal{R}, 1, 1; \mathcal{B}, \mu^k, \nu^k)$ for any $k \in \mathbb{N}$.

- Suppose the transitivity condition holds, and if possible, suppose we have a confetti model $(\mathcal{R}, \lambda_r, \rho; \mathcal{B}, \lambda_b, \beta)$ with $\mathsf{CAF}_{\mathsf{red}}(\lambda, \rho, \beta) < 1/2$, i.e., $\lambda_r \rho^2 < \lambda_b \beta^2$, but red is supercritical.
- Observe that

$$\begin{split} (\mathcal{R}, \lambda_r, \rho; \mathcal{B}, \lambda_b, \beta) &\equiv (\mathcal{R}, \lambda_r \rho^2, 1; \mathcal{B}, \lambda_b \rho^2, \frac{\beta}{\rho}) & \text{[by } (x_1, x_2, x_3) \mapsto (x_1/\rho, x_2/\rho, x_3)] \\ &\equiv (\mathcal{R}, 1, 1; \mathcal{B}, \frac{\lambda_b}{\lambda_r}, \frac{\beta}{\rho}) & \text{[by } (x_1, x_2, x_3) \mapsto (x_1, x_2, \lambda_r \rho^2 x_3)] \\ &\equiv (\mathcal{R}, 1, 1; \mathcal{B}, \mu, \nu) & \text{[by } \mu := \lambda_b/\lambda_r, \nu = \beta/\rho] \\ &\equiv (\mathcal{R}, \mu^{k-1}, \nu^{k-1}; \mathcal{B}, \mu^k, \nu^k) & \text{for any } k \in \mathbb{N} & \text{[by similar scaling]} \end{split}$$

• If red is supercritical in $(\mathcal{R}, 1, 1; \mathcal{B}, \mu, \nu)$, then red is supercritical in $(\mathcal{R}, \mu, \nu; \mathcal{B}, \mu^2, \nu^2)$. Therefore, by transitivity, red is supercritical in $(\mathcal{R}, 1, 1; \mathcal{B}, \mu^2, \nu^2)$. By induction, red is supercritical in $(\mathcal{R}, 1, 1; \mathcal{B}, \mu^k, \nu^k)$ for any $k \in \mathbb{N}$. We also have $\mu \nu^2 > 1$.

- Suppose the transitivity condition holds, and if possible, suppose we have a confetti model $(\mathcal{R}, \lambda_r, \rho; \mathcal{B}, \lambda_b, \beta)$ with $\mathsf{CAF}_{\mathsf{red}}(\lambda, \rho, \beta) < 1/2$, i.e., $\lambda_r \rho^2 < \lambda_b \beta^2$, but red is supercritical.
- Observe that

$$\begin{split} (\mathcal{R}, \lambda_r, \rho; \mathcal{B}, \lambda_b, \beta) &\equiv (\mathcal{R}, \lambda_r \rho^2, 1; \mathcal{B}, \lambda_b \rho^2, \frac{\beta}{\rho}) & \text{[by } (x_1, x_2, x_3) \mapsto (x_1/\rho, x_2/\rho, x_3)] \\ &\equiv (\mathcal{R}, 1, 1; \mathcal{B}, \frac{\lambda_b}{\lambda_r}, \frac{\beta}{\rho}) & \text{[by } (x_1, x_2, x_3) \mapsto (x_1, x_2, \lambda_r \rho^2 x_3)] \\ &\equiv (\mathcal{R}, 1, 1; \mathcal{B}, \mu, \nu) & \text{[by } \mu := \lambda_b/\lambda_r, \nu = \beta/\rho] \\ &\equiv (\mathcal{R}, \mu^{k-1}, \nu^{k-1}; \mathcal{B}, \mu^k, \nu^k) & \text{for any } k \in \mathbb{N} & \text{[by similar scaling]} \end{split}$$

• If red is supercritical in $(\mathcal{R}, 1, 1; \mathcal{B}, \mu, \nu)$, then red is supercritical in $(\mathcal{R}, \mu, \nu; \mathcal{B}, \mu^2, \nu^2)$. Therefore, by transitivity, red is supercritical in $(\mathcal{R}, 1, 1; \mathcal{B}, \mu^2, \nu^2)$. By induction, red is supercritical in $(\mathcal{R}, 1, 1; \mathcal{B}, \mu^k, \nu^k)$ for any $k \in \mathbb{N}$. We also have $\mu \nu^2 > 1$.

Proposition 4.

For any $\sigma > 1$, there exists $0 < \beta_1 < \beta_2 < \infty$, such that for all $\beta \notin (\beta_1, \beta_2)$, blue is supercritical in the model $(\mathcal{R}, 1, 1; \mathcal{B}, \frac{\sigma}{\beta^2}, \beta)$.

• Hypothesis: Transitivity condition holds, red is supercritical in $(\mathcal{R}, 1, 1; \mathcal{B}, \mu^k, \nu^k)$ for any $k \in \mathbb{N}$, and $\mu\nu^2 > 1$. $(\nu = 1 \text{ is not possible})$

Proposition 4.

For any $\sigma > 1$, there exists $0 < \beta_1 < \beta_2 < \infty$, such that for all $\beta \notin (\beta_1, \beta_2)$, blue is supercritical in the model $(\mathcal{R}, 1, 1; \mathcal{B}, \frac{\sigma}{\beta^2}, \beta)$.

Ghosh Confetti Percolation 17 July, 2025

• Hypothesis: Transitivity condition holds, red is supercritical in $(\mathcal{R}, 1, 1; \mathcal{B}, \mu^k, \nu^k)$ for any $k \in \mathbb{N}$, and $\mu\nu^2 > 1$. $(\nu = 1 \text{ is not possible})$

Proposition 4.

For any $\sigma > 1$, there exists $0 < \beta_1 < \beta_2 < \infty$, such that for all $\beta \notin (\beta_1, \beta_2)$, blue is supercritical in the model $(\mathcal{R}, 1, 1; \mathcal{B}, \frac{\sigma}{\beta^2}, \beta)$.

• Choosing k sufficiently large we can get $\mu^k \nu^{2k} > \sigma$ and $\nu^k \notin (\beta_1, \beta_2)$. So, red can not percolate in $(\mathcal{R}, 1, 1; \mathcal{B}, \frac{\mu^k \nu^{2k}}{\iota^2 k}, \nu^k)$. (Contradiction!!!)

Ghosh Confetti Percolation 17 July, 2025

• Hypothesis: Transitivity condition holds, red is supercritical in $(\mathcal{R}, 1, 1; \mathcal{B}, \mu^k, \nu^k)$ for any $k \in \mathbb{N}$, and $\mu \nu^2 > 1$. ($\nu = 1$ is not possible)

Proposition 4.

For any $\sigma > 1$, there exists $0 < \beta_1 < \beta_2 < \infty$, such that for all $\beta \notin (\beta_1, \beta_2)$, blue is supercritical in the model $(\mathcal{R}, 1, 1; \mathcal{B}, \frac{\sigma}{\beta^2}, \beta)$.

- Choosing k sufficiently large we can get $\mu^k \nu^{2k} > \sigma$ and $\nu^k \notin (\beta_1, \beta_2)$. So, red can not percolate in $(\mathcal{R}, 1, 1; \mathcal{B}, \frac{\mu^k \nu^{2k}}{2k}, \nu^k)$. (Contradiction!!!)
- This completes the proof.

Confetti Percolation 17 July, 2025

Proposition 4.

For any $\sigma>1$, there exists $0<\beta_1<\beta_2<\infty$, such that for all $\beta\notin(\beta_1,\beta_2)$, blue is supercritical in the model $(\mathcal{R},1,1;\mathcal{B},\frac{\sigma}{\beta^2},\beta)$.

- To prove transitivity, it is enough to show that $\mathbb{P}(C^{\mathsf{red}}(\mathbf{0}) \cap S_n \neq \emptyset)$ is
 - (a) monotonic (either non-increasing or non-decreasing) for $eta \in (0,1)$ and
 - (b) monotonic (either non-increasing or non-decreasing) for $\beta \in (1, \infty)$ for each n > 1.

Proposition 4.

For any $\sigma>1$, there exists $0<\beta_1<\beta_2<\infty$, such that for all $\beta\notin(\beta_1,\beta_2)$, blue is supercritical in the model $(\mathcal{R},1,1;\mathcal{B},\frac{\sigma}{\beta^2},\beta)$.

- ullet To prove transitivity, it is enough to show that $\mathbb{P}(C^{\mathsf{red}}(\mathbf{0}) \cap S_n
 eq \emptyset)$ is
 - (a) monotonic (either non-increasing or non-decreasing) for $eta \in (0,1)$ and
 - (b) monotonic (either non-increasing or non-decreasing) for $\beta \in (1, \infty)$ for each n > 1.
- By Russo's formula, for $A := \{C^{red}(\mathbf{0}) \cap S_n \neq \emptyset\}$,

$$\begin{split} &\mathbb{P}_{\beta+\delta}(A) - \mathbb{P}_{\beta}(A) \\ &= \left(\frac{\sigma}{\sigma + \beta^2} - \frac{\sigma}{\sigma + (\beta + \delta)^2}\right) \cdot \mathbb{E}_{\beta}(\# \text{ 'colour pivotal' points for } A) \\ &- \frac{\sigma}{\sigma + (\beta + \delta)^2} \cdot \mathbb{E}_{\beta}(\# \text{ 'size pivotal' points for } A). \end{split}$$

• Here, the *i*-th Poisson point is 'colour pivotal' for A indicates if we change its colour from red to blue, it will affect the occurrence of A. Similarly, the *i*-th Poisson point is 'size pivotal' for A means if the point is blue and we change the side length of the associated blue square from β to $\beta + \delta$, it will affect the occurrence of A.

Thank You